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ABSTRACT: Melt index is considered an important qual-
ity variable determining product specifications. Reliable pre-
diction of melt index (MI) is crucial in quality control of
practical propylene polymerization processes. In this paper
a least squares support vector machines (LS-SVM) soft-sen-
sor model of propylene polymerization process is developed
to infer the MI of polypropylene from other process vari-
ables. Considering the use of a SSE cost function without
regularization might lead to less robust estimates; the
weighted least squares support vector machines (weighted
LS-SVM) approach of propylene polymerization process is

further proposed to obtain a robust estimation of melt index.
The performance of standard SVM model is taken as a basis
of comparison. A detailed comparison research among the
standard SVM, LS-SVM, and weighted LS-SVM models is
carried out. The research results confirm the effectiveness of
the presented methods. © 2006 Wiley Periodicals, Inc. ] Appl
Polym Sci 101: 285-289, 2006
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INTRODUCTION

The melt index is considered crucial in determining
the product’s grade and quality control of polypro-
pylene produced in practical industrial processes. It is
defined as the mass rate of extrusion flow through a
specified capillary under prescribed conditions of
temperature and pressure, which is costly and time-
consuming when carried out in the laboratory.'” Such
situations can lead to a significant production of off-
grades, especially during the on-line operations in-
volved to change product specifications. An alterna-
tive is to develop on-line estimators of product quality
based on available process information that would
allow the supervision of the overall process and to
avoid mismatch of product quality during product
grade transitions.

The mechanistic modeling approaches for the pre-
diction of the melt index are often challenged by the
engineering activity and the relatively high complex-
ity of the kinetic behavior and operation of the poly-
mer plants,®> which makes it difficult to obtain de-
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tailed predictions in real time. Instead, some produc-
tion plants use machine learning methods to provide
information for product and process design, monitor-
ing, and control®~® on the basis of real-time database
systems where a considerable amount of data about
the studied process is available. Several works have
been carried out to predict melt indices with various
types of modeling methods. Rallo et al.” provided a
fuzzy ARTMAP neural system and two hybrid net-
works to infer the melt index of six different LDPE
grades produced in a tubular reactor. Han et al. '°
compared the performance of support vector ma-
chines, partial least squares, and artificial neural net-
works for MI estimation of San and PP processes, and
concluded that the standard SVM yields the best pre-
diction among the three toward the studied problems.
Unfortunately, further research on SVM regarding this
topic has not been carried out.

In this paper, a LS-SVM model of propylene poly-
merization process is first developed to infer the MI of
polypropylene from other readily measurable process
variables. Considering the use of a SSE cost function
without regularization, as it is in the case with LS-
SVM, might lead to estimates which are less robust,
e.g., with respect to outliers on the data or when the
underlying assumption of a Gaussian distribution for
the error variables is not realistic''; the weighted LS-
SVM approach of propylene polymerization process is
further presented to obtain a robust estimation of melt
index of polypropylene. Up to now, litter, however,
has appeared in the literature on these matters. The
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aspects concerning the methods are described, high-
lighting the basic architectures and algorithms. The
standard SVM model of propylene polymerization
process proposed by Han' is also developed as a
basis of comparison research. The performance of all
models have been illustrated and evaluated with an
actual propylene polymerization. The results obtained
are then discussed and concluding remarks about the
methods are finally presented.

THE SUPPORT VECTOR METHOD OF
FUNCTION ESTIMATION

Standard support vector machines

Support vector machine introduced by Vapnik'*'? is a
valuable tool for solving pattern recognition and clas-
sification problems. SVMs can be applied to regression
problems by the introduction of an alternative loss
function.

Consider regression in the following set of functions

flx) = we(x) +b (1)

with given training data {x;y}}, where M denotes the
number of training data, x; is the input data, and y; is
the output data. The nonlinear mapping ¢ maps the
input data into a so-called high dimensional feature
space, where a linear regression problem is obtained
and solved. In the support vector method one aims at
minimizing the regularized risk

1 1
R(w,b) = vy 2" Lyfl) + 50" w  (2)
where

ly —fo)l=e
L.(y,flx) = { |y f(x)] — & otherwise (3)

In eq. (2), L, is the so-called e-insensitive loss function,
which indicates that it does not penalize errors below
1

e. The second term, Ew w is used as a flatness mea-
surement of function' and v is a regularized constant
determining the tradeoff between the training error
and the model flatness. The estimation problem is
formulated then as the optimization problem

min R(w,&,¢) =
w,b,&,¢

1
w w + y{zM &+ EM 51} (4)
subject to the constraints

yi—welx) —b=e+ & i=1,..

M
—y,+w(p(x)+b<8+§z i=1,...M (5)
ég 1—‘1 .M
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where ¢ & are slack variables. One obtains w
= 3" (af — a)p(x;) where o*,a are obtained by solv-
i=1

ing a quadratic program and are the Lagrange multi-
pliers related to the first and second set of constraints.
The data points corresponding to nonzero values for
of, a are called support vectors. Typically, many of
these values are equal to zero. Finally, one obtains the
following model in the dual space

fx) = S (e = a)Kerx) + b (6)

where the kernel function K corresponds to

e(x) e(x) (7)

according to Mercer’s condition.'> and RBF kernels
will be employed in this study.

An extension studied in the context of the e-insen-
sitive loss function is

K(x;,x) =

R(w,&8) = ,w w+v{EM &y + 2" (f,)”} (8)
where p = 1 corresponds to eq. (4).

Least squares support vector machines

For the sequel, a least squares version'* of the support
vector method is employed for function estimation
problems. It corresponds to p = 2 and the following
form of ridge regression

min R(w,€) = 1w w + z'sz & (9)

w,b,&
subject to the equality constraints
yi=wex)+b+§& i=1,...M (10)

One defines the Lagrangian

L(wbéa) = Rwg) = 2" a@e(x) +b+&=y)

(11)

with «; Lagrange multipliers. the conditions for opti-
mality

(

aL "

i 0—-w= Eizlai@(xi)

aL "

b =072 =0

oL

aﬁgzoﬁai:ygi i=1,.. .M
oL .
kazOengo(x,-)+b+§i—y,-=0 i=1,.. M

(12)
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Figure 1 Schematic of propylene polymerization process.

can be written as the solution to the following set of
linear equations after elimination of w and §;

Rt R M

T

withy = [y, .y, L, = [1.. 1], @ = [ay,. . .,ay]" and
L is an identity matrix.

The support values «; are proportional to the errors
at the data points eq. (12), while in the case of eq. (4)
most values are equal to zero.

The resulting LS-SVM model for function estima-
tion becomes

f(x) = YaK(x,x) + b (14)

i=1

where «, b are the solution to eq. (13)

Weighted least squares support vector machines

To obtain a robust estimate'! based upon the previous
LS-SVM solution, in a subsequent step, one can weight
the error variables & = «; / vy by weighting factors v;.
This leads to the optimization problem:

1 1
min R(w*,&) = Ew*T w* + E’YEM v&’ (15)
i=1

w* b*, &
subject to the equality constraints
yi=wle(x)+b*+§& i=1,.. M (16)
The Lagrangian becomes
L(w*,b*,§*,0*) = R(w*,£)

-2 alwe() + b+ £-y} (17)

The unknown variables for this weighted LS-SVM
problem are denoted by the * symbol. From the con-

ditions for optimality and elimination of w*, & one
obtains the KKT system

0 1) b* 0
e e =] 0w
where the diagonal matrix V is given by
= di ! ! 19
V, = diag) - (19)

The choice of the weights v; is determined based upon
the error variables & = «; / vy from the LS-SVM case.'
Robust estimates are obtained then by taking

1 if |& /8 =¢
0, = e~ |&/5] ifc, =|&/5 = ¢, (20)
C2 - C1
10* otherwise

where §; is a robust estimate of the standard deviation
of the LS-SVM error variables &;:

A IQR
5= 2% 0.6745 1)
The interquartile range, IQR, is the difference between
the 75th percentile and 25th percentile. The constants
c1, ¢, are typically chosen as ¢; = 2.5 and ¢, = 3."
Eventually, the procedure (15)-(20) can be repeated

iteratively.

RESULTS AND DISCUSSION

Figure 1 shows the schematic diagram of a propylene
polymerization process, which consists of four reac-
tors in series. The polymerization reaction takes place
in a liquid phase in the first two reactors and is com-
pleted in a vapor phase in the third and fourth reactors
to produce the powdered polymer product. The mod-
eling data used for training and validating the soft-
sensor have been acquired from the historical logs
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TABLE 1
Performance for the Testing Dataset

Modeling method MAE MRE (%) RMSE STD TIC

Weighted LS-SVM 0.0754 3.27 0.0198 0.1055 0.0223

LS-SVM 0.0842 3.66 0.0214 0.1116 0.0240

SVM 0.1105 4.80 0.0274 0.1394 0.0307
recorded in a real propylene polymerization plant. A N
total of 9 process variables (t, p, 1, a: process temper- > v — 9,7
ature, pressure, level of liquid, percentage of hydro- =
gen in vapor phase; f;, f,, f5: flow rate of 3 streams of TIC = (26)

propylene; f,, f5: flow rate of catalyst and aid-catalyst
respectively) are chosen as the input variables accord-
ing to the reaction mechanism. The average residence
time of the products is taken into account in the pro-
cess of datasets construction. Data are filtered to dis-
card abnormal situations and to improve the quality of
the predictive system. The input and output variables
are normalized with respect to their maximum oper-
ation values. Data from the records of the process
variables and MI are separated into training, test and
generalization sets that are constructed from the time
series of recorded plant data. And the test set is ob-
tained from the same batch as the training set, while
the generalization set is derived from another batch.
The detailed comparison of test performance be-
tween LS-SVM and standard SVM is listed in Table I
and the comparison between LS-SVM and weighted
LS-SVM is also presented. The difference between the
output of the models and the desired output is re-
ferred to as the error and can be measured in different
ways. Here, mean absolute error (MAE), mean relative
error (MRE), root mean squared error (RMSE), stan-
dard deviation of absolute errors (STD), and Theil’s
Inequality Coefficient (TIC), are adopted as derivation
measurements between measured and predicted val-
ues. They are defined as the following, respectively:

1 N
MAE = > ly; = 9 (22)

i=1

MRE = 1 % vi— Ui

=N ” (23)

i=1

12 N

RMSE = /52 (i = §) (24)

i=1

1 N
STD = mz(ei—é)zi=1,...,N (25)

i=1

Syt +

i=1

N
=y — f,e = N 2 e, and y;, ¥; denote the
i=1

measured value and predicted result, respectively.

The data listed in Table I indicates that the weighted
LS-SVM model functions best on the overall, with
mean absolute error of 0.0754, compared with those of
0.0842 and 0.1105 obtained from the corresponding
LS-SVM and SVM models, respectively. The RMSE
listed also in Table I have confirmed the prediction
accuracy of the proposed methods. Weighted LS-SVM
yields the smallest STD among the three, which indi-
cates the predictive stability of the method. TIC of
weighted LS-SVM is quite acceptable when compared
with those of standard SVM and LS-SVM, which in-
dicates a good level of agreement between the pro-
posed model and the studied process.'® A visual im-
pression of the agreement between the measured MI
and the models output can be obtained from Figure 2,
where the weighted LS-SVM model yields consis-
tently good predictions.

where, ¢;

7 Test
—-— .Anal:.rtic vallue
28k -+ SVM h
4 LE-8YM
28t — Weighted LS-SVM

Melt Index

o 5 10 15 20 25 30
Observation Number

Figure 2 Estimation via three approaches for test dataset.
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TABLE 1I
Performance for the Generalization Dataset
Modeling method MAE MRE (%) RMSE STD TIC
Weighted LS-SVM 0.0635 2.49 0.0312 0.0695 0.0138
LS-SVM 0.0662 2.60 0.0313 0.0751 0.0138
SVM 0.0818 3.21 0.0410 0.0962 0.0181

To illustrate the universality of the proposed model,
a detailed comparison of the generalization data set is
presented in Table II. It is noted that the performance
is consistent with the above test results, with a slightly
increase in predictive precision. The mean absolute
error of weighted LS-SVM is 0.0635, compared with
0.0818 of SVM, showing an error decrease of approx-
imately 20%. Similar behaviors are observed in terms
of MXAE, MXRE, RMSE, STD, and TIC.

CONCLUSIONS

This paper has presented methods for using LS-SVM
and weighted LS-SVM to infer MI of polypropylene
from other process variables. Comparing with stan-
dard SVM, LS-SVM involves equality instead of in-
equality constraints, which greatly simplifies the prob-
lem in such a way that the solution is characterized by
a linear system instead of a quadratic programming
problem. More robust estimates for regression can be
obtained by a weighted version of LS-SVM, which is
done by first applying an un-weighted LS-SVM and,
in the second stage, associate weighting values to the
error variables based upon the resulting error vari-
ables from the first stage.

The weighted LS-SVM model predict MI with mean
relative error of approximately 3.27% when appropri-

ately trained, compared with those of 3.66% and 4.80%
obtained from the corresponding LS-SVM and SVM
models, respectively. The results indicate that the pro-
posed method provides prediction reliability and ac-
curacy and supposed to have promising potential for
practical use.

References

1. Bafna, S. S.; Beall, A.-M. ] Appl Polym Sci 1997, 65, 277.

2. Yi, H.-S.; Kim, J. H;; Han, C; Lee, J.; Na, S.-S. Ind Eng Chem Res
2003, 42, 91.

3. McAuley, K. B.; MacGregor, J. F. AICHE ] 1991, 6, 825.

4. Sarkar, P.; Gupta, S. K. Polym Eng Sci 1993, 6, 368.

5. McKenna, T. F.; Soares, J. B. P. Chem Eng Sci 2001, 56, 3931.

6. Hunt, K. J.; Sbarbaro, D.; Zbikowski, R.; Gawthrop, P. J. Auto-

matica 1992, 28, 1083.
7. Barto, A. G; Sutton, R. S.; Anderson, C. W. IEEE Trans Syst Man
Cybern 1983, 13, 834.
. Xiong, Z. H.; Zhang, J. Neurocomputing 2004, 61, 317.
9. Rallo, R.; Ferre-Giné, J.; Arenas, A.; Giralt, F. Comput Chem Eng
2002, 26, 1735.
10. Han, I.-S.; Han, C.; Chung, C.-B. ] Appl Polym Sci 2005, 95, 967.
11. Suykens, J. A. K.; Vandewalle, J. Neurocomputing 2002, 48, 85.
12. Vapnik, V. The Nature of Statistical Learning Theory; Springer:
New York, 1995.
13. Vapnik, V. Statistical Learning Theory; John Wiley: New York,
1998.
14. Suykens, ]J. A. K.; Vandewalle, ]. Neural Process Lett 1999, 9, 293.
15. Murray-Smith, D. J. Math Comput Model Dyn Syst 1998, 4, 5.

o]



